Probabilistic Formulation of Independent Vector Analysis Using Complex Gaussian Scale Mixtures
نویسندگان
چکیده
We propose a probabilistic model for the Independent Vector Analysis approach to blind deconvolution and derive an asymptotic Newton method to estimate the model by Maximum Likelihood.
منابع مشابه
Mesh Segmentation Using Laplacian Eigenvectors and Gaussian Mixtures
In this paper a new completely unsupervised mesh segmentation algorithm is proposed, which is based on the PCA interpretation of the Laplacian eigenvectors of the mesh and on parametric clustering using Gaussian mixtures. We analyse the geometric properties of these vectors and we devise a practical method that combines single-vector analysis with multiple-vector analysis. We attempt to charact...
متن کاملNonlinear Independent Component Analysis by Self-Organizing Maps
Linear Independent Component Analysis considers the problem of nd-ing a linear transformation that makes the components of the output vector statistically independent. This can be applied to blind source separation, where the input data consist of unknown linear mixtures of unknown independent source signals. The original source signals can be recovered from their mixtures using the assumption ...
متن کاملStatistical Modeling of Images with Fields of Gaussian Scale Mixtures
The local statistical properties of photographic images, when represented in a multi-scale basis, have been described using Gaussian scale mixtures (GSMs). Here, we use this local description to construct a global field of Gaussian scale mixtures (FoGSM). Specifically, we model subbands of wavelet coefficients as a product of an exponentiated homogeneous Gaussian Markov random field (hGMRF) and...
متن کاملPii: S0893-6080(97)00147-0
The relation between hard c-means (HCM), fuzzy c-means (FCM), fuzzy learning vector quantization (FLVQ), soft competition scheme (SCS) of Yair et al. (1992) and probabilistic Gaussian mixtures (GM) have been pointed out recently by Bezdek and Pal (1995). We extend this relation to their training, showing that learning rules by these models to estimate the cluster centers can be seen as approxim...
متن کاملComparison between supervised and unsupervised learning of probabilistic linear discriminant analysis mixture models for speaker verification
We present a comparison of speaker verification systems based on unsupervised and supervised mixtures of probabilistic linear discriminant analysis (PLDA) models. This paper explores current applicability of unsupervised mixtures of PLDA models with Gaussian priors in a total variability space for speaker verification. Moreover, we analyze the experimental conditions under which this applicatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009